Q- thinkdev #6

Bindings again


https://thinkdev.netlify.app/

Variables






What does this do again?

let x = 5












Because we're using let, we can always
bind the name again to another value later:

let x = 5
6

X












We can’t do this with const because it creates
a constant binding that cannot be changed:

const x = 5
x =6 // TypeError: Assignment to constant variable



After declaring, we can use the name to refer to its bound value:

let x = 5
console. log(x) // 5



We can operate on the name as we would on the value:

let x = 5
console.log(x + 2) // 7/



We can also bind a name to the value of another name:

let x = 5
let y = x





















What if we reassign one of them?

let x = 5
let y = x
6

X












Reserved words



You can’t use some words as names because they are
reserved for special use in JavaScript.



awalt
break
case
catch
class
const
continue
debugger
default
delete
do

else

enum
export
extends
false
finally
for
function
i1f
implements
import
interface
1n

instanceof
let

new

null
package
private
protected
public
return
static
super
switch

this
throw
true
try
typeof
var
void
while
with
yileld



You don't have to memorise them;
JavaScript will complain if you use any of them as a name:

let 1f = 5 // SyntaxError: Unexpected token "if’



Now, let’s try something different






What does this do?

let x = 5
let x = 6



You can't redeclare an existing variable in the same scope.

let x = 5
let x 6 // SyntaxError



Scope






This is allowed because the braces create a block
and the block in turn creates a new scope for its variables.

let x = 5
1t (true)

1
let x 6



In that scope, the new x shadows the old one:

let x = 5
1t (true) §
let x = 6
console.log(x) // 6



But only in that scope:




We say that variables declared in a block are local to the block:

let x = 5
1t (true) §
let x = 6 // x 1s local to the block

console. log(x)



JavaScript also has a global scope containing several built-
in bindings. Some global bindings we've already used are
console, Number, String,and Boolean.



Variables are visible in their scope and in inner scopes:

let x = 5
1t (true) §
console. log(x) // 5



You can't access a variable where it's not visible:

1t (true)
let x =
§

console.log(x) // ReferenceError

]
6



The same rules apply to deeper scopes:

let x =
let y =
1t (true) §
let x 6
1t (true) §
console. log(x)

N ~ d Ul

console. log(y)
let z = 8

§

console. log(z)



The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:

let x =
let y =
1t (true) §
let x 6
1t (true) §
console. log(x) // ©
console. log(y) // 7/
let z = 8
§

console. log(z)

N ~ d Ul



The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




The same rules apply to deeper scopes:




A final note is that you can't use a variable
before it is declared, even in the same scope:

console. log(x) // ReferenceError
let x = 5



