Q- thinkdev #3

Collections

https://thinkdev.netlify.app/

Let's revisit the FutureLearn courses example:

The Museum as a Site and

Source for Learnin :
g Fundamentals of Business

Strategy

4.6 (75 reviews)

Part of an ExpertTrack
), - p—'.'...n;_ ¥ -
i, gy
iacs

| S—

3

International Logistics: A
Beginner's Guide to
Logistics Management

Young People and Mental
Health

4.7 (649 reviews)

How do we representitin code?

let courseTitle = 'The Museum as a Site and
let courseRating = 4.6

let courseReviewsCount = /5

let courselsNew = false

let courselsPartOfAnExpertTrack = false

let
let
let
let
let

courseTitle = 'The Museum as a Site and
courseRating = 4.6

courseReviewsCount = /5

courselsNew = false
courselsPartOfAnExpertTrack = false

course2Title = 'Fundamentals of Business
courseZ2Rating = 0

course?ReviewsCount = 0

course2lsNew = true
course2IlsPartOfAnExpertTrack = false

let course3Title = 'Young People and Mental Health'
let course3Rating = 4.7

let course3ReviewsCount = 649
let course3IsNew = false
let course3IsPartOfAnExpertTrack = false

let course4Title = 'International Logistics: A ...
let coursed4Rating = 0

let coursed4ReviewsCount = 0

let coursed4lIsNew = false

- _ A —— — - A~ o~ — o ——

Things are getting unwieldy already; we have
so many related variables that are not tied
together

We need abetter way torepresentan
“entity” that has different “attributes”.

Objects

Let'sbreakitdown

Start with curly brackets:

const course = {}

Add a property (a key: value pair):

const course = §
title: 'The Museum as a Site and ...°

Add more properties; separate by commas (last comma is optional):

const course = §
title: 'The Museum as a Site and
rating: 4.6,
reviewsCount: 75,
isNew: false,
1sPartOfAnExpertTrack: false,

How to name properties

Use strings:

The quotes are optional if the name is a valid variable name
(i.e. an identifier) or a number:

prop: "...",

The JavaScript way is also came LCase:

const obj = §

prop: ...,
anotherProp:

Property names must be unique:

Property names must be unique:

Using objects

Access a property

Get the value of a property using the dot notation:

const course = §
title: 'The Fundamentals of Business Strategy ',
'reviews count': 0,
isNew: true,

console. log(course.title) // The Fundamentals of

Set the value of a property too with the dot notation:

const course = §
title: 'The Fundamentals of Business Strategy',
'reviews count': @

I

isNew: true,

course.i1sNew = false

console. log(course.isNew) // false

Be careful with property names that aren't identifiers:

const course = §
title: 'The Fundamentals of Business Strategy',

'reviews count': 0,
isNew: true,

course. 'reviews count'++ // Error

Use the bracket notation instead for such properties:

const course = §
title: 'The Fundamentals of Business Strategy',
'reviews count': @

I

isNew: true,

course[reviews count' J++

console. log(course['reviews count']) // 1

You can add a property:

const course = §
title: 'The Fundamentals of Business Strategy',
'reviews count': @

I

isNew: true,

course.rating = 0

console. log(course.rating) // 0

And delete a property too:

const course = §
title: 'The Fundamentals of Business Strategy',
'reviews count': @

I

isNew: true,

delete course[reviews count]

console. log(course['reviews count']) // undefined

Objects are mutable

In contrast, numbers, strings, and booleans are immutable:

const str = "Strings are immutable”

// Try to change 'Strings’' to 'Springs’
str[1l] = 'p' // No error, but i1t doesn’'t work

console.log(str) // Strings are immutable

Does an object have a property?

Use the 1n operator to check if an object has a property:

const course = §
title: 'The Fundamentals of Business Strategy’,
'reviews count': @

I

isNew: true,

console. log("title” i1n course) // true
console.log("rating” in course) // false

Pack variables into an object

It's common to have variables that you want to pack into an object:

const title = 'The Fundamentals of Business Strategy’
const reviewsCount = 0
const i1sNew = true

You can set the object properties manually:

const course = §
title: title,
reviewsCount: reviewsCount,
1sNew: isNew,

Or use the shorthand form:

How about unpacking?

It may be tedious to type the course. prefix sometimes:

const course = §
title: 'The Fundamentals of Business Strategy’,
reviewsCount: O,

isNew: true,

console. log(course.title)
console. log(course.reviewsCount)

You can unpack the properties you need into variables:

const title = course.title
const reviewsCount = course.reviewsCount

console. log(title)
console. log(reviewsCount)

There's also a shorter way; it's called destructuring:

Copy an objectinto anewone

You may want to copy the properties of one object into a new one:

const ratingInfo = §
rating: 0,
reviewsCount: 0,

const course = §

title: 'The Fundamentals of Business Strategy ',
isNew: true,

// You want rating and reviewsCount here.

Here's one way to do it:

Another way is to spread the object:

Let's update the original example
to use objects

What if we could collect the coursesina“list”?

Arrays

const people = ["Amal”, "Isa", "Khadija"]

The elements can be of different types:

const arr = ["hi", 12.34, true, §1]

Access an array element

Arrays are ordered and can be indexed, like strings:

// 0 1 2
const people = ["Amal®, "Isa”, "Khadija']

console. log(people[@]) // "Amal”

Access an array element

Arrays are ordered and can be indexed, like strings:

// ? 1 2
const people = ["Amal”, "Isa”, "Khadija"]

// Replace "Isa” with "Elleman”
people[l] = "Elleman”

How longis this array?

Use the length property to get the length of an array.
const people = ["Amal”, "Isa”, "Khadija"]

console. log(people.length) // 3

Push to an array

Use the push method to add an item to the end of an array:
const people = ["Amal", "Isa", "Khadija"]
people.push("Habeeb")

console. log(people)
// ["Amal”, "Isa”, "Khadija", "Habeeb"]

Pop from an array

Use the pop method to remove the last element of an array:
const people = ["Amal”, "Isa", "Khadija"]

people.pop()

console. log(people)
// ["Amal", "Isa’]

Does an array have an element?

The includes method tells if an array contains a certain element:
const people = ["Amal", "Isa", "Khadija']

people.includes("Isa") // true
people.includes("Mubaraq”) // false

Getaportion of anarray

Use the slice method:

// 0 1 2
const people = ["Amal”, "Isa”, "Khadija"]

people.slice(®@, 2) // ["Amal’, "Isa"]

Get aportion of anarray

Use the slice method:

// 0 1 2
const people = ["Amal”, "Isa”, "Khadija']

people.slice(l) // ["Isa", "Khadija']

Spread an array into another

const names = ["Habeeb", "Mubaraq"]
const people = ["Amal®, "Isa", "Khadija", ...names]

console. log(people)

// ["Amal", "Isa”, "Khadija", "Habeeb", "Mubaraq"]

I

Arrays are also mutable....

... because they are objects.

const people = ["Amal", "Isa”, "Khadija"]

console. log(typeof people)
// object &

Finally ...

